Poster SCF28

The CO₂-Solubility and Viscosity Enhancing Potential of Self-Associating CO₂-Philes

Jason LEE^{*a*}, Robert ENICK^{*a*}, Eric BECKMAN^{*a*}, Stephen CUMMINGS^{*a*}, Aman DHUWE^{*a*}, Robert PERRY^{*b*}, Michael O'BRIEN^{*b*}, Mark DOHERTY^{*b*}

^aUniversity of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES, ^bGeneral Electric Global Research, Niskayuna, NY, UNITED STATES

⊠jasonleepitt@gmail.com

The low viscosity of CO_2 at typical enhanced oil recovery (EOR) conditions is responsible for a poor mobility ratio that causes viscous fingering and poor sweep efficiency, leading to reduced efficiency and yield. One way to overcome this problem is to directly thicken CO_2 . However, the only known polymeric CO_2 thickener (a compound that dissolves in CO₂ and increases it viscosity significantly when present in dilute concentration) is a fluoroacrylate-styrene random copolymer that is too expensive for commercial application. CO_2 has been successfully thickened by dissolution of other high molecular weight polymers like polydimethylsiloxane (PDMS, silicone oil) and polyvinyl acetate (PVAc) but this approach requires several wt% of the polymer along with a large concentration (20%) of co-solvent such as toluene making the method impractical for field use. The alternative to polymeric thickeners are small molecule thickeners that can dramatically increase solvent viscosity at wt% concentrations less than that of polymeric thickeners. Small associative molecules like tributyltin fluoride and hydroxyaluminum di(2-ethyl hexanoate) can thicken light hydrocarbons at concentrations as low as 0.1wt%, but these compounds are CO2-insoluble. The basic design of new CO2 thickener candidates designed by our group consists of a small oligomeric CO₂-philic portion to promote dissolution along with CO₂-phobic associative groups to promote viscosity-enhancing intermolecular associations. The biggest hurdle in the molecular design is selecting the appropriate type and number of associating groups needed to enhance viscosity, while maintaining solubility in CO₂. For example, if the associating groups are too weak, the thickening candidate is likely to dissolve in CO_2 but the resultant increase in viscosity will be very modest. If the thickener is modified to include stronger associating groups, it is likely that these functionalities will render the molecule insoluble in CO₂. Many novel CO₂ thickening candidates were synthesized in an attempt to achieve the elusive molecular design that strikes the balance of maintaining solubility in CO₂ at EOR conditions while exhibiting enough self-associations to increase the viscosity of CO₂ significantly at dilute concentrations.